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Abstract. An isolated system consisting of an ideal gas separated into two parts by an adiabatic
piston, initially subjected to different pressures, is considered. This is well known as a system
with incomplete information from a purely thermodynamic viewpoint, in so far as the final
equilibrium state is concerned. However, at least for an ideal gas, the fact that the final
equilibrium pressure depends only on the total energy and volume of the system, in conjunction
with an ad hoc conjecture advanced by the authors, allows one to completely remove the
indeterminacy of the problem. Indeed, it is shown that the proposed new relation, which asserts
that the equilibrium pressure is equal to a suitably defined mean pressure acting on the piston,
allows one to find a unique solution while remaining entirely within a thermodynamic framework.
It is also shown that, among all possible functional relations, the equality of these two pressures
is the only one always consistent with the second law of thermodynamics. The results derived,
however, are strictly valid only for ideal gases.

1. Introduction

In appendix C of his excellent text on thermodynamics [1]†, Callen faces the problem of
thermodynamic equilibrium for gaseous systems having internal adiabatic constraints. He
deals with the following case as an example.

A gas is contained in a cylinder having rigid, adiabatic walls, which are also impermeable
to any substance. The cylinder is divided into two parts,A andB, by a moveable piston,
which is adiabatic and impermeable to any substance as well. If the constraints which
initially keep the piston steady are removed, the piston will start moving in the direction of
least pressure and then carry out a series of damped oscillations. For the sake of simplicity,
let us neglect the friction between the piston and the walls of the cylinder. Nevertheless, the
internal fluid viscosity alone is able to progressively damp out the oscillations of the piston.
Thus, the system can reach a final state of equilibrium in which, of course, the pressure is
the same for both subsystemsA andB. As for the temperature, it need not be the same
for both subsystems in equilibrium. The point is, as Callen clearly states, that these two
equilibrium temperatures cannot be determined unless further information is given about
kinetic parameters (for example, the gas viscosity) which cannot be included in a purely
thermodynamic treatment. In Callen’s assessment, since in cases like this the maximum
entropy principle is inadequate, only three relations are available, namely,

UA + UB = U (1.1)

VA + VB = V (1.2)

pA = pB (1.3)

† See, equivalently, problem 2.7-3 in [2].

0305-4470/98/428407+10$19.50c© 1998 IOP Publishing Ltd 8407



8408 S Ascoli et al

whereUA, VA andpA are, respectively, the internal energy, the volume and the pressure
of gasA at the equilibrium;UB, VB andpB are the analogous quantities for gasB; while
U andV are the constant internal energy and the constant volume of the whole, two-gas
system.

If the equation of state of the gas is known,pA andpB can be expressed as functions
of the respective extensive variables:

pA = p(UA, VA) pB = p(UB, VB). (1.4)

Thus, relations (1.1)–(1.3) constitute a system of three equations in the four unknowns
UA, VA,UB, VB , the solution of which cannot be determined unless another relation between
at least two of these unknowns is available. Searching for a missing relation within a purely
thermodynamic framework is the purpose of this work.

2. Preliminary computations

We will examine only the case of gases which are sufficiently rarefied that they may be
regarded as ideal, and whose heat capacities may be assumed to be constant (i.e. independent
of temperature). The reason is that ideal gases enjoy a particular property which is essential
for our solution of the problem.

Indeed, ifTA andTB denote the equilibrium temperatures of the gases,nA andnB the
respective numbers of moles, andCV the common heat capacity at constant volume, the
internal energies are simplyUA = nACV TA andUB = nBCV TB . As a consequence, the
equations of state of the two gases can be rewritten as

pA = R

CV

UA

VA
pB = R

CV

UB

VB
(2.1)

whereR is the universal gas constant. Therefore, equation (1.3) yields

UA

VA
= UB

VB
. (2.2)

On eliminatingUB and VB among the latter equation and equations (1.1) and (1.2), one
obtains

UA

VA
= U

V
. (2.3)

Of course, an analogous relation holds for gasB, so that, on denoting bypE the common
pressure at equilibrium, each of equations (2.1) becomes

pE = R

CV

U

V
. (2.4)

Thus, the system of the two gases enjoys the property that its equilibrium pressure can be
determined even though the number of relations available is one less than the number of
relevant unknowns characterizing its final equilibrium. In fact,pE depends only on the total
energy and volume of the system, or, in other words, is independent of howU andV are
initially distributed between the two gases.

Note also that, ifUA,0, VA,0 andpA,0 are, respectively, the internal energy, the volume,
and the pressure of gasA at the beginning of the process, andUB,0, VB,0 andpB,0 are the
analogous quantities for gasB, then one has

UA,0+ UB,0 = U VA,0+ VB,0 = V (2.5)
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and

pA,0 = R

CV

UA,0

VA,0
pB,0 = R

CV

UB,0

VB,0
. (2.6)

Hence equation (2.4) becomes

pE = pA,0VA,0+ pB,0VB,0
VA,0+ VB,0 (2.7)

or, equivalently,

pE = UA,0+ UB,0
(UA,0/pA,0)+ (UB,0/pB,0) . (2.8)

Both equations (2.7) and (2.8), being weighted averages, show that, as one might suppose,
the final equilibrium pressurepE is intermediate betweenpA,0 andpB,0 and in particular,
that if these initial pressures happen to be equal, then the equilibrium pressure has this same
value.

3. Lower and upper bounds to the equilibrium values

In searching for a missing relation (that should link energy and volume of either gas in its
final state), since no use has been made so far of the second law of thermodynamics, it is
quite natural to wonder what sort of information might be drawn from it.

Since both gases undergo an irreversible process with no heat exchange, the entropy of
neither of them can decrease. More precisely, one can write the molar entropy change of,
say, gasA, as1sA = 1s(r)A +1s(g)A where the entropy received,1s(r), must vanish for an
adiabatic process, while the internally generated entropy,1s(g), cannot be negative. Hence,
using the expression for the entropy of ideal gases with constantCV yields

1sA = CV ln

(
UA

UA,0

)
+ R ln

(
VA

VA,0

)
> 0. (3.1)

Now, on making use of equations (2.3) and (2.6), one can eliminateVA/VA,0 so that, having
regard to equation (2.4), this inequality becomes

UA

UA,0
>
(
pE

pA,0

)R/Cp
(3.2)

whereCp = CV + R is the molar heat capacity of the ideal gas at constant pressure.
Similarly, for gasB one has

UB

UB,0
>
(
pE

pB,0

)R/Cp
(3.3)

or

U − UA
UB,0

>
(
pE

pB,0

)R/Cp
. (3.4)

Thus, combining (3.2) and (3.4), the condition

UA,0

U

(
pE

pA,0

)R/Cp
6 UA

U
6 1− UB,0

U

(
pE

pB,0

)R/Cp
(3.5)

must be satisfied at any equilibrium. As for the volume, an analogous procedure leads to

VA,0

V

(
pA,0

pE

)CV /Cp
6 VA

V
6 1− VB,0

V

(
pB,0

pE

)CV /Cp
. (3.6)
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Of course, similar bounds hold for gasB. Note that the bounds in (3.5) must coincide
with those in (3.6), sinceVA/V always coincides withUA/U in view of equation (2.3). In
general let

α ≡ UA,0

UB,0
β ≡ VA,0

VB,0
(3.7)

whencepA,0/pB,0 = α/β. Then, in the initial state one has, in terms of the dimensionless
independent parametersα andβ,

UA,0

U
=
(

1+ 1

α

)−1
UB,0

U
= (1+ α)−1 (3.8)

VA,0

V
=
(

1+ 1

β

)−1
VB,0

V
= (1+ β)−1 (3.9)

pE

pA,0
=
(

1+ 1

α

)(
1+ 1

β

)−1
pE

pB,0
= (1+ α)(1+ β)−1. (3.10)

Thus, equations (3.5) and (3.6) become(
1+ 1

α

)−CV /Cp (
1+ 1

β

)−R/Cp
6 UA

U
6 1− (1+ α)−CV /Cp (1+ β)R/Cp (3.11)

and(
1+ 1

α

)−CV /Cp (
1+ 1

β

)−R/Cp
6 VA

V
6 1− (1+ α)−CV /Cp (1+ β)R/Cp . (3.12)

As noted above, the bounds appearing in (3.11) coincide with those in (3.12).
Supposing our gas to be monatomic so thatCp = 5R/2 and CV = 3R/2, let us

calculate, as an example, the equilibrium values of energy and volume forpA,0 = 2pB,0
andVA,0 = VB,0, namely forα = 2 andβ = 1. In this case (3.11) yields for gasA

0.5946 UA

U
6 0.608

and for gasB

0.3926 UB

U
6 0.406

each ratio being the complement to unity of the other. The bounds for the volumes are
the same as for the energy, as noted above. In conclusion, the second law dictates definite
bounds for the equilibrium values of energy and volume, but, however close the bounds
may be, the solution of the problem still remains undetermined.

4. A spontaneous adiabatic process

Before continuing the analysis of the problem raised by Callen, it is instructive to examine
a simpler case of an adiabatic process, since, by analogy, it might point the way to a unique
solution of Callen’s problem from a purely thermodynamic viewpoint.

Accordingly, consider a gas contained in a cylinder with rigid, impermeable and
adiabatic walls. One of the bases of the cylinder is fixed while the other is a moveable
piston, through which the system can exchange only work with a reservoir maintained at
a fixed pressurepE . Let the initial internal pressure of the gas bep0. If the constraints
which initially keep the piston steady are removed, the piston will start to move inwards
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or outwards depending on whether the gas pressure is lower or higher than the reservoir’s.
Then the piston will carry out a series of damped oscillations before stopping in a position
of equilibrium, that, as shown below, can be uniquely determined by the first law of
thermodynamics and the equation of state. What we want to point out now is that the
final equilibrium pressure of the gas turns out to coincide with a suitably defined average
of the mechanical pressure exerted by the gas on the piston during the process of expansion
or contraction.

First, it must be recognized that during the process the pressure inside the gas has to
be regarded in general as a function of space and time. However, the mechanical pressure
pm over the piston surface may be assumed to be uniform, although variable in time. Thus,
if the piston carries outN oscillations before stopping, the work done by the gas on the
piston may be written as

L =
N∑
i=1

∫ Vi

Vi−1

pm dV (4.1)

whereV0 is the initial volume of the gas andV1, V2, . . . , VN ≡ VE are the volumes at the
end of the first, the second,. . . , theN th oscillation. If we now introduce the quantity

p̄ = 1

VE − V0

N∑
i=1

∫ Vi

Vi−1

pm dV (4.2)

which may be called the mean pressure on the piston, then

L = p̄(VE − V0). (4.3)

Let us now focus attention on the piston. Since it is at rest both at the beginning and
at the end of the process, even if it eventually stops at a different position, the general
work-energy theorem of mechanics ensures that the total work done by all the forces acting
upon it is zero. Since we have assumed no friction between the piston and the walls of the
cylinder, it can be concluded that the workL done by the gas on the piston, given by (4.3),
is exactly opposite to the work

Lext = −pE(VE − V0) (4.4)

done upon it from outside. Hence one has

p̄ = pE (4.5)

that is, the mean pressure on the piston coincides with the reservoir’s pressure, which,
of course, is the final equilibrium pressure. This result, although simple, can be of some
importance. Indeed, as noted above, were it possible to somehow extrapolate it to the case
dealt with by Callen, it would then provide the one missing relation necessary to find a
unique solution for that problem.

In any case, since the process being considered takes place with no heat exchange, the
variation in internal energy is, in the light of (4.4)

UE − U0 = −pE(VE − V0). (4.6)

If the equation of state of the gas is known,pE can be expressed as a function ofUE and
VE , or

pE = p(UE, VE). (4.7)
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The previous two equations constitute a system in two unknowns,UE andVE , the solution
of which yields the final state of equilibrium. For an ideal gas with constant heat capacities
equation (4.7) takes the simple form

pE = R

CV

UE

VE
(4.8)

and the solution, as easily verified, is given by

UE

U0
= CV

Cp
+ R

Cp

pE

p0

VE

V0
= R

Cp
+ CV
Cp

p0

pE
. (4.9)

5. A purely thermodynamic treatment of Callen’s problem

Let us now return to the problem discussed by Callen. Ifp̄A and p̄B denote the mean
pressures of gasA and gasB on the piston, defined according to (4.2), then the work done
by the forces exerted by each gas on the piston is, in analogy with equation (4.3),

LA = p̄A(VA − VA,0) LB = p̄B(VB − VB,0). (5.1)

On the other hand, since there is no heat exchange, one must have

UA − UA,0 = −LA UB − UB,0 = −LB (5.2)

whenceLA + LB = 0, the total energy being constant. Then from (5.1) one hasp̄A = p̄B ,
the total volume also being constant. Thus, on denoting byp̄ the common value of the
mean pressures on the piston, the first of the two relations (5.1) becomes

LA = p̄(VA − VA,0) (5.3)

whence

UA − UA,0 = −p̄(VA − VA,0). (5.4)

A similar relation holds for gasB, but in virtue of the conservation rules (1.1) and (1.2),
it is nothing but a consequence of equation (5.4). Thus, equations (1.1)–(1.3) and (5.4)
constitute a system of four equations in the five unknownsUA, VA,UB, VB and p̄. After
eliminatingUB andVB this system reduces to the system of equations (2.3) and (5.4) in the
three unknownsUA, VA and p̄, so the problem still remains indeterminate.

In any case, if equation (2.3) is written, according to (2.4), as

UA

VA
= CV

R
pE (5.5)

after eliminatingVA between this equation and equation (5.4), and recalling (2.6), one
obtains

UA

UA,0
=

1+ R
CV

p̄

pA,0

1+ R
CV

p̄

pE

. (5.6)

Similarly, after eliminatingUA between (5.4) and (5.5), one has

VA

VA,0
=

1+ CV
R

pA,0
p̄

1+ CV
R

pE
p̄

. (5.7)

Of course, similar relations hold for gasB.
Note that, whatever̄p may be, from (5.6) and (5.7) it is evident, since the value of

pE is intermediate between the initial pressures, that the gas initially at lower pressure gets
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compressed and heats up, whereas the other expands and cools down. In particular, if there
is no difference in the initial pressures, no change at all can occur after releasing the piston.

Of course, these same results could be derived as a consequence of the second law, for
example via equation (3.2).

6. A proposed relation for solving the problem

It is quite natural to wonder whether a thermodynamic relation exists linking the mean
pressure on the piston̄p to the equilibrium gas pressurepE . The strong analogy between
the problem dealt with by Callen and that discussed in section 4 suggests that one may
simply assume

p̄ = pE (6.1)

in analogy to equation (4.5). If this equality held, equations (5.6) and (5.7) would reduce
exactly to equations (4.9) for the one-gas system, that is

UA

UA,0
= CV

Cp
+ R

Cp

pE

pA,0

VA

VA,0
= R

Cp
+ CV
Cp

pA,0

pE
. (6.2)

These relations, together with their analogues for gasB, would then represent the unique
solution of the problem. For example, in the case of a monatomic gas withα = 2, β = 1,
as treated in section 3, one would get

UA = 9
10UA,0 VA = 6

5VA,0

and

UB = 6
5UB,0 VB = 4

5VB,0.

The total energyU in the final state of equilibrium would be distributed as

UA = 3
5U UB = 2

5U.

Equation (2.3) implies that the same distribution would hold for the total volume of the
system.

The above values for the ratiosUA/U and UB/U fall within the narrow ranges—
respectively(0.594, 0.608) for gasA and (0.392, 0.405) for gasB—derived at the end of
section 3. In other words, in this case the proposed equality (6.1) is not inconsistent with the
second law. As a matter of fact, it can be shown easily that in no case (namely, whatever
the initial state of the two-gas system) does the proposed equality engender a contradiction
with fundamental principles. Indeed, on making use of the two relations (6.2), the entropy
change (3.1) of either gas, say gasA, can be expressed as

1sA = CV ln

(
CV

Cp
+ R

Cp

pE

pA,0

)
+ R ln

(
R

Cp
+ CV
Cp

pA,0

pE

)
. (6.3)

By simply scrutinizing1sA/R as a function of the variablex ≡ pA,0/pE (see curve (a) in
figure 1), one concludes that it is continuous and monotonically decreasing forpE < pA,0
but monotonically increasing forpE > pA,0. Since1sA = 0 for pE = pA,0, it follows that
the entropy change (6.3) is never negative, in agreement with the second law. Obviously,
this result also holds for gasB.
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Figure 1. Dimensionless molar entropy change of either of the two gases as a function of the
ratio of initial to final pressure, under the assumptions that the mean pressure on the piston is
equal to (a) the final equilibrium pressure, (b) half that value. In case (a) the entropy change is
never negative, for any initial conditions, in agreement with the second law, whereas in case (b)
it proves to be negative in an interval of initial conditions ranging frompA,0 = 0.26pE to
pA,0 = pE , thereby violating the second law.

7. Concluding remarks

The fact that the assumption (6.1) is never in conflict with the second law is a necessary
but not sufficient condition for its validity. Thus, it is quite natural to wonder whether
any other law relatinḡp to pE can exist which remains consistent with the second law for
all possible states in which the two-gas system might start. It can be shown that no such
alternative relation exists.

Indeed, consider any law relatinḡp to pE different from equation (6.1). Then there
will exist at least one value ofpE such thatp̄ does not coincide withpE . In this case, on
inserting equations (5.6) and (5.7) into (3.1), the molar entropy change of either gas, say
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gasA, may be expressed as

1sA

R
= λ ln

(
1+ z/λxA

1+ z/λ
)
+ ln

(
1+ λxA/z

1+ λ/z
)

(7.1)

where

λ = CV /R z = p̄

pE
xA = pA,0

pE
. (7.2)

When written in this form,1sA may be regarded, for a given value ofz, as a function of
xA, or, sincepE is fixed, as a function ofpA,0. As an example, curve (b) in figure 1 shows,
for z = 0.5, the behaviour of1sA/R for a monatomic ideal gas whenxA is varied. It is
seen that the entropy change is negative in the interval(0.26, 1). This means that, whenever
pA,0 is chosen so thatxA belongs to this interval—as can always be done physically—the
valuez = 0.5 would lead to a violation of the second law.

It is straightforward to verify that the same situation arises wheneverz 6= 1. In other
words, for any value ofp̄ different frompE there will exist a definite set of initial states
for which the second law is violated (see appendix). Obviously, the same argument applies
if one makes the assumption thatp̄, like pE , also depends only on the total energy and the
total volume, but in a manner different frompE .

It can therefore be concluded that, if there is a law directly linkingpE and p̄ it must
be p̄ = pE , while the only alternative to this identity is thatp̄ necessarily depends on how
the total volume and total energy of the two-gas system are initially distributed between the
two componentsA andB.

Finally, it should be noted that the assumption (6.1) can also be regarded as a strong
constraint imposed upon the possible dynamical paths leading the two-gas system to final
thermodynamic equilibrium. Indeed, the relation (6.1) implicitly states that the mean
mechanical pressure on the piston during the spontaneous process has a definite functional
dependence upon the total energy and volume of the system, no matter howU andV are
distributed between the two gases. Or, to be more precise, it is prescribed that the mean
pressurep̄ depends onU andV in exactly the same way as doespE , namely, according to
equation (2.4).

In conclusion, it can be stated that the information added by the proposal (6.1) removes
the indeterminacy of Callen’s problem, as far as ideal gases are concerned, and allows
one to find a unique solution, represented by (6.2), while still remaining within an entirely
thermodynamic framework.

Note that for nonideal gases no immediate generalization of the present treatment is
possible. In fact, in contrast to an ideal gas which satisfies equation (2.4), the equilibrium
pressure cannot be predicted given only the equation of state. Its determination requires, in
general, some further information about the system. Thus, all the results derived here are
strictly valid only for ideal gases.

Appendix

In our notation it is clear that, once given the total energyU and the total volumeV ,
assigning an initial state of the two-gas system is equivalent to assigning the values ofxA
and xB , one of which lies in the interval [0, 1] while the other exceeds unity. Suppose
now, with no loss of generality, that gasA is the one starting with lower pressure so that
xA < 1 andxB > 1. Since the molar entropy change1sA must be non-negative, a trivial
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manipulation of (7.1) yields(
λ+ z/xA
λ+ z

)λ (
λxA + z
λ+ z

)
> 1. (A.1)

Hence, sincexA is positive, one immediately finds

λxA + z
λ+ z > x

v
A (A.2)

where we have usedv ≡ λ/(1+ λ) = CV /Cp. The solution of this simple inequality inz,
recalling thatxA is also less than unity, is

z > v

1− v
xvA − xA
1− xvA

. (A.3)

Starting now with the analogue of (7.1) for gasB, a similar derivation leads on the other
hand to

z 6 v

1− v
xvB − xB
1− xvB

. (A.4)

Obviously, the roles of gasesA andB would be reversed if the latter started with the
lower pressure. In any case, it can be stated that the bounds forz ensuring no violation of
the second law are obtained by evaluating the function

f (x) ≡ v

1− v
xv − x
1− xv (A.5)

at x = xA andx = xB , the lower function value yielding the lower bound forz.
For example, forα = 2 andβ = 1 (see section 3) one hasxA = 4

3 andxB = 2
3, and for

a monatomic ideal gas(v = 3
5) the latter equation yieldsf (xA) = 1.15 andf (xB) = 0.815.

Therefore, in this case the ratiōp/pE must belong to the interval(0.815, 1.15).
In general, the function (A.5), after definingf (1) ≡ 1, is a continuous function for any

x > 0 monotonically increasing from zero to infinity, so thatx < 1 impliesf (x) < 1 while
x > 1 impliesf (x) > 1. Hence, for any choice of the initial state of the two-gas system,
the physically permitted range for the quantityz ≡ p̄/pE is always a neighbourhood of
unity and the only point common to all such intervals is the pointz = 1. Therefore it can
be concluded that̄p = pE is the unique relation—provided there is such a relation linking
the two pressures—that ensures that the second law holds whatever the initial state of the
two-gas system.
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